Quick Start Guide
Get started with AgenticAnts in under 5 minutes. This guide will walk you through setting up your first AI agent monitoring.
Want to learn more? Watch How to Set Up the ANTS Platform: AI Agent Tracing, Slack/Jira Integrations & Full LLMOps Walkthrough
Prerequisites
Before you begin, ensure you have:
- A modern web browser
- Node.js 20+ or Python 3.9+ installed
- An existing AI agent or application (or follow along with our example)
Step 1: Create Your Account
- Visit agenticants.ai (opens in a new tab)
- Click "Request Demo" or "Get Started"
- Fill out the contact form with your details
- You'll receive an email with your account credentials
Free Trial Available: Start with our free trial - 50,000 credits included, no credit card required.
Step 2: Set Up Your Organization and Project
After creating your account, you'll be guided through a quick setup process to configure your organization and project:

The setup workflow includes:
- Create Your Organization - Enter your organization name (e.g., "Acme Corporation")
- Invite Team Members - Add team members by email and assign roles (Admin, Member, Viewer). You can skip this and invite members later from Organization Settings
- Create Your First Project - Set up a project with a name and description. Select which team members should have access
- Add Payment Method - Optional step for continued usage beyond the free trial. Powered by Stripe for secure payment processing. Your free trial includes 50,000 credits with no credit card required
- Setup Tracing - Get your API keys to start integrating AgenticAnts into your applications
Setup Complete! Your organization and project are now ready. You can now proceed to get your API credentials.
Step 3: Get Your Credentials
Once logged in:
- Navigate to Settings → API Keys
- Find your Public Key and Secret Key
- Copy both keys and store them securely
# Set your credentials as environment variables
export ANTS_PLATFORM_PUBLIC_KEY="pk-ap-your-public-key-here"
export ANTS_PLATFORM_SECRET_KEY="sk-ap-your-secret-key-here"
export ANTS_PLATFORM_HOST="https://api.agenticants.ai" # Optional, defaults to productionKeep Your Keys Secret: Never commit your keys to version control or share them publicly. The secret key provides full access to your account.
Step 4: Install the SDK
Choose your preferred programming language:
npm install ants-platform
# or install specific packages
npm install @antsplatform/tracing @antsplatform/otel
# or
yarn add ants-platform
# or
pnpm add ants-platformStep 5: Initialize AgenticAnts
Set up AgenticAnts in your application:
// For OpenTelemetry-based setup (recommended)
import { NodeTracerProvider } from "@opentelemetry/sdk-trace-node";
import { resourceFromAttributes } from "@opentelemetry/resources";
import { SemanticResourceAttributes } from "@opentelemetry/semantic-conventions";
import { AntsPlatformSpanProcessor } from "@antsplatform/otel";
import { setAntsPlatformTracerProvider } from "@antsplatform/tracing";
// Create the Ants Platform span processor
const processor = new AntsPlatformSpanProcessor({
publicKey: process.env.ANTS_PLATFORM_PUBLIC_KEY,
secretKey: process.env.ANTS_PLATFORM_SECRET_KEY,
baseUrl: process.env.ANTS_PLATFORM_HOST || "https://api.agenticants.ai",
environment: process.env.ANTS_PLATFORM_ENVIRONMENT || "production",
});
// Create tracer provider
const provider = new NodeTracerProvider({
resource: resourceFromAttributes({
[SemanticResourceAttributes.SERVICE_NAME]: "my-agent",
[SemanticResourceAttributes.SERVICE_VERSION]: "1.0.0",
}),
spanProcessors: [processor],
});
// Register with Ants Platform and globally
setAntsPlatformTracerProvider(provider);
provider.register();
console.log('✅ Ants Platform tracing initialized');Step 6: Instrument Your First Agent
Now let's add monitoring to an AI agent:
import { startObservation } from '@antsplatform/tracing'
import OpenAI from 'openai'
const openai = new OpenAI()
async function customerSupportAgent(query: string) {
// Start a trace
const trace = startObservation('customer-support-agent', {
input: { user_input: query },
metadata: {
agent: 'customer-support',
channel: 'web-chat',
priority: 'high'
}
})
// Set trace-level attributes
trace.updateTrace({
userId: 'user_123',
tags: ['agent:customer-support', 'service:my-app', 'version:1.0.0']
})
try {
// Create a span for request validation
const validationSpan = trace.startObservation('request_validation', {
input: { raw_input: query },
metadata: { step: 'validation' }
})
// Validate input...
validationSpan.update({
output: { validated_input: query, input_length: query.length }
})
validationSpan.end()
// Create a span for LLM call
const llmSpan = trace.startObservation('llm_preparation', {
input: { model: 'gpt-4', task: 'customer-support' },
metadata: { step: 'preparation' }
})
llmSpan.end()
// Your agent logic
const response = await openai.chat.completions.create({
model: 'gpt-4',
messages: [
{ role: 'system', content: 'You are a helpful customer support agent.' },
{ role: 'user', content: query }
]
})
const output = response.choices[0].message.content
// Create generation span for LLM call
const generation = trace.startObservation('gpt-4_llm_call', {
model: 'gpt-4',
input: query,
output: output,
usageDetails: {
input: response.usage.prompt_tokens,
output: response.usage.completion_tokens,
total: response.usage.total_tokens
},
metadata: {
step: 'llm_call',
status: 'success',
agent: 'customer-support'
}
}, { asType: 'generation' })
generation.end()
// Update trace with final results
trace.update({
output: { result: output },
metadata: {
input_tokens: response.usage.prompt_tokens,
output_tokens: response.usage.completion_tokens,
total_tokens: response.usage.total_tokens,
status: 'success'
}
})
// End the trace
trace.end()
return output
} catch (error) {
// Log errors
const errorSpan = trace.startObservation('error_handling', {
input: { error: error.message },
output: { error_response: error.message },
level: 'ERROR',
metadata: {
error_type: error.name,
step: 'error_handling'
}
})
errorSpan.end()
trace.update({
level: 'ERROR',
output: { error: error.message }
})
trace.end()
throw error
}
}
// Use your agent
const result = await customerSupportAgent('How do I track my order?')
console.log(result)Step 7: View Your Data
- Navigate to your AgenticAnts Dashboard (opens in a new tab)
- You should see your first trace appear within seconds
- Click on the trace to see detailed information:
- Input and output
- Execution time
- Token usage and cost
- Metadata and tags

** Congratulations!** You've successfully instrumented your first AI agent with AgenticAnts.
Next Steps
Now that you have basic monitoring set up, explore more features:
Advanced Tracing
Learn how to trace complex multi-agent systems with nested spans and parallel operations.
Cost Tracking
Set up detailed cost tracking and budgets for your AI operations.
Security Setup
Add PII detection and security guardrails to protect sensitive data.
Read the Security Posture guide →
Framework Integrations
Integrate with LangChain, LlamaIndex, or other AI frameworks.
Common Issues
Credentials Not Working
If you're getting authentication errors:
- Verify both your public key and secret key are correct
- Check they're properly set in your environment variables
- Ensure there are no extra spaces or characters
# Verify your credentials are set
echo $ANTS_PLATFORM_PUBLIC_KEY
echo $ANTS_PLATFORM_SECRET_KEYConnection Timeout
If requests are timing out:
- Check your network connection
- Verify firewall settings allow outbound HTTPS
- Try increasing timeout settings
const processor = new AntsPlatformSpanProcessor({
publicKey: process.env.ANTS_PLATFORM_PUBLIC_KEY,
secretKey: process.env.ANTS_PLATFORM_SECRET_KEY,
baseUrl: process.env.ANTS_PLATFORM_HOST,
timeout: 30000, // 30 seconds
})Traces Not Appearing
If traces aren't showing in the dashboard:
- Verify your public key and secret key are correct
- Check the environment setting matches your dashboard view
- Verify the host URL is correct for your deployment
- Wait a few seconds - traces are processed asynchronously
- Check that your OpenTelemetry provider is properly registered
Need Help? Join our Discord community (opens in a new tab) or email support@agenticants.ai
Example Projects
Check out these complete example projects:
- Customer Support Bot - LangChain + OpenAI integration
- Code Assistant - Multi-agent system with tool usage
- Document Q&A - RAG system with LlamaIndex
- Data Analyst Agent - AutoGen integration with code execution
View examples on GitHub → (opens in a new tab)