Docs
Guides & Tutorials
Cost Optimization

Cost Optimization Guide

Reduce AI costs without sacrificing quality or performance through intelligent optimization strategies.

Overview

AI costs can quickly escalate without proper monitoring and optimization. This guide covers:

  • Cost Analysis - Understand where your money is going
  • Optimization Strategies - Proven techniques to reduce costs
  • Budget Management - Set up effective cost controls
  • ROI Measurement - Measure optimization impact
  • Continuous Optimization - Maintain cost efficiency over time

Cost Analysis

1. Understanding AI Costs

from agenticants import AgenticAnts
import pandas as pd
 
ants = AgenticAnts(api_key=os.getenv('AGENTICANTS_API_KEY'))
 
class CostAnalyzer:
    def __init__(self):
        self.ants = ants
    
    def analyze_cost_breakdown(self, period="last_30_days"):
        """Analyze cost breakdown by components"""
        
        # Get cost breakdown
        cost_breakdown = self.ants.finops.get_cost_breakdown(period=period)
        
        print("💰 AI Cost Breakdown")
        print("=" * 50)
        print(f"Total Cost: ${cost_breakdown['total_cost']:.2f}")
        print(f"Period: {period}")
        print()
        
        # Breakdown by component
        print("By Component:")
        for component, cost in cost_breakdown['by_component'].items():
            percentage = (cost / cost_breakdown['total_cost']) * 100
            print(f"  {component}: ${cost:.2f} ({percentage:.1f}%)")
        
        # Breakdown by model
        print("\nBy Model:")
        for model, cost in cost_breakdown['by_model'].items():
            percentage = (cost / cost_breakdown['total_cost']) * 100
            print(f"  {model}: ${cost:.2f} ({percentage:.1f}%)")
        
        # Breakdown by agent
        print("\nBy Agent:")
        for agent, cost in cost_breakdown['by_agent'].items():
            percentage = (cost / cost_breakdown['total_cost']) * 100
            print(f"  {agent}: ${cost:.2f} ({percentage:.1f}%)")
        
        return cost_breakdown
    
    def analyze_cost_trends(self, period="last_90_days"):
        """Analyze cost trends over time"""
        
        trends = self.ants.finops.get_cost_trends(period=period)
        
        print("📈 Cost Trends")
        print("=" * 50)
        
        # Calculate trend
        if len(trends) >= 2:
            first_cost = trends[0]['cost']
            last_cost = trends[-1]['cost']
            trend_percentage = ((last_cost - first_cost) / first_cost) * 100
            
            if trend_percentage > 0:
                print(f"📈 Costs increased by {trend_percentage:.1f}% over {period}")
            else:
                print(f"📉 Costs decreased by {abs(trend_percentage):.1f}% over {period}")
        
        # Show daily costs
        print("\nDaily Costs:")
        for day in trends[-7:]:  # Last 7 days
            print(f"  {day['date']}: ${day['cost']:.2f}")
        
        return trends

2. Cost Attribution Analysis

import { AgenticAnts } from '@agenticants/sdk'
 
const ants = new AgenticAnts({ apiKey: process.env.AGENTICANTS_API_KEY })
 
class CostAttributionAnalyzer {
  private ants: AgenticAnts
  
  async analyzeCostAttribution(period: string = 'last_30_days') {
    // Get cost attribution data
    const attribution = await this.ants.finops.getCostAttribution({ period })
    
    console.log('💰 Cost Attribution Analysis')
    console.log('='.repeat(50))
    console.log(`Total Cost: $${attribution.totalCost.toFixed(2)}`)
    console.log(`Period: ${period}`)
    console.log()
    
    // By customer
    console.log('By Customer:')
    attribution.byCustomer.forEach(customer => {
      const percentage = (customer.cost / attribution.totalCost) * 100
      console.log(`  ${customer.name}: $${customer.cost.toFixed(2)} (${percentage.toFixed(1)}%)`)
    })
    
    // By team
    console.log('\nBy Team:')
    attribution.byTeam.forEach(team => {
      const percentage = (team.cost / attribution.totalCost) * 100
      console.log(`  ${team.name}: $${team.cost.toFixed(2)} (${percentage.toFixed(1)}%)`)
    })
    
    // By use case
    console.log('\nBy Use Case:')
    attribution.byUseCase.forEach(useCase => {
      const percentage = (useCase.cost / attribution.totalCost) * 100
      console.log(`  ${useCase.name}: $${useCase.cost.toFixed(2)} (${percentage.toFixed(1)}%)`)
    })
    
    return attribution
  }
  
  async identifyHighCostCustomers() {
    const attribution = await this.ants.finops.getCostAttribution({ period: 'last_30_days' })
    
    console.log('🔍 High Cost Customers')
    console.log('='.repeat(50))
    
    const highCostCustomers = attribution.byCustomer
      .filter(customer => customer.cost > 100) // > $100
      .sort((a, b) => b.cost - a.cost)
    
    highCostCustomers.forEach(customer => {
      console.log(`${customer.name}: $${customer.cost.toFixed(2)}`)
      console.log(`  Queries: ${customer.queryCount}`)
      console.log(`  Avg cost per query: $${(customer.cost / customer.queryCount).toFixed(4)}`)
    })
    
    return highCostCustomers
  }
}

3. Cost Efficiency Metrics

class CostEfficiencyAnalyzer:
    def __init__(self):
        self.ants = ants
    
    def analyze_cost_efficiency(self, period="last_30_days"):
        """Analyze cost efficiency metrics"""
        
        efficiency_metrics = self.ants.finops.get_efficiency_metrics(period=period)
        
        print("⚡ Cost Efficiency Metrics")
        print("=" * 50)
        print(f"Cost per Query: ${efficiency_metrics['cost_per_query']:.4f}")
        print(f"Cost per Token: ${efficiency_metrics['cost_per_token']:.6f}")
        print(f"Cost per Successful Query: ${efficiency_metrics['cost_per_successful_query']:.4f}")
        print(f"Cost per Hour: ${efficiency_metrics['cost_per_hour']:.2f}")
        
        # Efficiency trends
        print("\nEfficiency Trends:")
        trends = efficiency_metrics['trends']
        if trends['cost_per_query']['trend'] > 0:
            print(f"📈 Cost per query increased by {trends['cost_per_query']['percentage']:.1f}%")
        else:
            print(f"📉 Cost per query decreased by {abs(trends['cost_per_query']['percentage']):.1f}%")
        
        return efficiency_metrics
    
    def identify_inefficient_operations(self):
        """Identify inefficient operations"""
        
        inefficient_ops = self.ants.finops.get_inefficient_operations()
        
        print("🐌 Inefficient Operations")
        print("=" * 50)
        
        for op in inefficient_ops:
            print(f"Operation: {op['name']}")
            print(f"  Cost: ${op['cost']:.2f}")
            print(f"  Efficiency Score: {op['efficiency_score']:.2f}")
            print(f"  Optimization Potential: {op['optimization_potential']:.1f}%")
            print()
        
        return inefficient_ops

Optimization Strategies

1. Model Selection Optimization

class ModelSelectionOptimizer:
    def __init__(self):
        self.ants = ants
    
    def optimize_model_selection(self):
        """Optimize model selection for cost and performance"""
        
        # Analyze current model usage
        model_analysis = self.ants.finops.get_model_analysis()
        
        print("🤖 Model Selection Optimization")
        print("=" * 50)
        
        recommendations = []
        
        for model, data in model_analysis.items():
            print(f"\nModel: {model}")
            print(f"  Cost: ${data['cost']:.2f}")
            print(f"  Performance: {data['performance_score']:.2f}")
            print(f"  Usage: {data['usage_count']} queries")
            
            # Generate recommendations
            if data['performance_score'] > 0.9 and data['cost'] > 0.01:
                recommendation = {
                    'model': model,
                    'action': 'consider_smaller_model',
                    'potential_savings': data['cost'] * 0.3,
                    'reason': 'High performance with high cost - consider smaller model'
                }
                recommendations.append(recommendation)
                print(f"  💡 Recommendation: Consider smaller model (Save ${recommendation['potential_savings']:.2f})")
        
        return recommendations
    
    def compare_models(self, task_type: str):
        """Compare models for specific task types"""
        
        model_comparison = self.ants.finops.compare_models(task_type=task_type)
        
        print(f"🔍 Model Comparison for {task_type}")
        print("=" * 50)
        
        for model, metrics in model_comparison.items():
            print(f"\n{model}:")
            print(f"  Cost per query: ${metrics['cost_per_query']:.4f}")
            print(f"  Performance score: {metrics['performance_score']:.2f}")
            print(f"  Latency: {metrics['latency']}ms")
            print(f"  Quality score: {metrics['quality_score']:.2f}")
        
        # Find best model for cost-performance ratio
        best_model = min(model_comparison.items(), 
                        key=lambda x: x[1]['cost_per_query'] / x[1]['performance_score'])
        
        print(f"\n🏆 Best cost-performance ratio: {best_model[0]}")
        
        return model_comparison

2. Prompt Optimization

class PromptOptimizer {
  private ants: AgenticAnts
  
  async optimizePrompts() {
    console.log('📝 Prompt Optimization')
    console.log('='.repeat(50))
    
    // Analyze prompt efficiency
    const promptAnalysis = await this.ants.finops.getPromptAnalysis()
    
    promptAnalysis.forEach(prompt => {
      console.log(`\nPrompt: ${prompt.name}`)
      console.log(`  Current length: ${prompt.currentLength} tokens`)
      console.log(`  Cost per query: $${prompt.costPerQuery.toFixed(4)}`)
      console.log(`  Quality score: ${prompt.qualityScore}`)
      
      if (prompt.optimizationPotential > 20) {
        console.log(`  💡 Optimization potential: ${prompt.optimizationPotential}%`)
        console.log(`  Potential savings: $${prompt.potentialSavings.toFixed(2)}/month`)
      }
    })
    
    return promptAnalysis
  }
  
  async implementPromptOptimizations() {
    const optimizations = await this.ants.finops.getPromptOptimizations()
    
    console.log('🚀 Implementing Prompt Optimizations')
    console.log('='.repeat(50))
    
    for (const optimization of optimizations) {
      console.log(`\nOptimizing: ${optimization.promptName}`)
      console.log(`  Original length: ${optimization.originalLength} tokens`)
      console.log(`  Optimized length: ${optimization.optimizedLength} tokens`)
      console.log(`  Reduction: ${optimization.reductionPercentage}%`)
      console.log(`  Monthly savings: $${optimization.monthlySavings.toFixed(2)}`)
      
      // Apply optimization
      await this.ants.finops.applyPromptOptimization(optimization.id)
      console.log(`  ✅ Applied optimization`)
    }
  }
}

3. Caching Strategies

class CachingOptimizer:
    def __init__(self):
        self.ants = ants
    
    def implement_response_caching(self):
        """Implement response caching to reduce costs"""
        
        print("💾 Implementing Response Caching")
        print("=" * 50)
        
        # Analyze cache potential
        cache_analysis = self.ants.finops.get_cache_analysis()
        
        print(f"Cache hit potential: {cache_analysis['hit_potential']:.1f}%")
        print(f"Potential monthly savings: ${cache_analysis['monthly_savings']:.2f}")
        
        # Configure caching
        self.ants.cache.configure({
            "strategy": "semantic_similarity",
            "similarity_threshold": 0.95,
            "ttl": "24h",
            "max_size": "1GB"
        })
        
        print("✅ Response caching configured")
        
        return cache_analysis
    
    def implement_embedding_caching(self):
        """Implement embedding caching for vector operations"""
        
        print("🔍 Implementing Embedding Caching")
        print("=" * 50)
        
        # Configure embedding cache
        self.ants.cache.configure_embedding_cache({
            "enabled": True,
            "strategy": "exact_match",
            "ttl": "7d",
            "max_size": "500MB"
        })
        
        print("✅ Embedding caching configured")
    
    def monitor_cache_performance(self):
        """Monitor cache performance"""
        
        cache_metrics = self.ants.cache.get_performance_metrics()
        
        print("📊 Cache Performance")
        print("=" * 50)
        print(f"Hit rate: {cache_metrics['hit_rate']:.1f}%")
        print(f"Miss rate: {cache_metrics['miss_rate']:.1f}%")
        print(f"Cost savings: ${cache_metrics['cost_savings']:.2f}")
        print(f"Cache size: {cache_metrics['cache_size']}")
        
        return cache_metrics

4. Request Optimization

class RequestOptimizer {
  private ants: AgenticAnts
  
  async optimizeRequestPatterns() {
    console.log('📊 Request Pattern Optimization')
    console.log('='.repeat(50))
    
    // Analyze request patterns
    const patterns = await this.ants.finops.getRequestPatterns()
    
    patterns.forEach(pattern => {
      console.log(`\nPattern: ${pattern.name}`)
      console.log(`  Frequency: ${pattern.frequency} requests/day`)
      console.log(`  Cost per request: $${pattern.costPerRequest.toFixed(4)}`)
      console.log(`  Total daily cost: $${pattern.dailyCost.toFixed(2)}`)
      
      if (pattern.optimizationPotential > 15) {
        console.log(`  💡 Optimization potential: ${pattern.optimizationPotential}%`)
      }
    })
    
    return patterns
  }
  
  async implementRequestOptimizations() {
    const optimizations = await this.ants.finops.getRequestOptimizations()
    
    console.log('🚀 Implementing Request Optimizations')
    console.log('='.repeat(50))
    
    for (const optimization of optimizations) {
      console.log(`\nOptimizing: ${optimization.name}`)
      console.log(`  Strategy: ${optimization.strategy}`)
      console.log(`  Expected savings: ${optimization.savingsPercentage}%`)
      console.log(`  Monthly savings: $${optimization.monthlySavings.toFixed(2)}`)
      
      // Apply optimization
      await this.ants.finops.applyRequestOptimization(optimization.id)
      console.log(`  ✅ Applied optimization`)
    }
  }
}

Budget Management

1. Setting Up Budgets

class BudgetManager:
    def __init__(self):
        self.ants = ants
    
    def setup_budgets(self):
        """Setup comprehensive budget management"""
        
        print("💰 Setting Up Budgets")
        print("=" * 50)
        
        # Create monthly budget
        monthly_budget = self.ants.finops.create_budget({
            "name": "Monthly AI Budget",
            "amount": 1000,
            "period": "monthly",
            "alerts": [
                {"threshold": 0.7, "type": "warning"},  # 70%
                {"threshold": 0.9, "type": "critical"}  # 90%
            ]
        })
        
        # Create team budgets
        team_budgets = [
            {"team": "engineering", "amount": 500},
            {"team": "product", "amount": 300},
            {"team": "marketing", "amount": 200}
        ]
        
        for budget in team_budgets:
            self.ants.finops.create_budget({
                "name": f"{budget['team']} Team Budget",
                "amount": budget["amount"],
                "period": "monthly",
                "team": budget["team"],
                "alerts": [
                    {"threshold": 0.8, "type": "warning"},
                    {"threshold": 0.95, "type": "critical"}
                ]
            })
        
        print("✅ Budgets created successfully")
        
        return monthly_budget
    
    def monitor_budget_usage(self):
        """Monitor budget usage"""
        
        budgets = self.ants.finops.get_budgets()
        
        print("📊 Budget Usage")
        print("=" * 50)
        
        for budget in budgets:
            usage_percentage = (budget['used'] / budget['amount']) * 100
            print(f"\n{budget['name']}:")
            print(f"  Used: ${budget['used']:.2f} / ${budget['amount']:.2f}")
            print(f"  Usage: {usage_percentage:.1f}%")
            
            if usage_percentage > 90:
                print("  ⚠️  Critical: Budget almost exceeded!")
            elif usage_percentage > 70:
                print("  ⚠️  Warning: Budget usage high!")
        
        return budgets

2. Cost Alerts and Notifications

class CostAlertManager {
  private ants: AgenticAnts
  
  async setupCostAlerts() {
    console.log('🚨 Setting Up Cost Alerts')
    console.log('='.repeat(50))
    
    // Create cost spike alert
    await this.ants.alerts.create({
      name: 'Cost Spike Alert',
      condition: 'hourly_cost > 50',
      window: '1h',
      channels: ['email', 'slack'],
      severity: 'warning'
    })
    
    // Create daily budget alert
    await this.ants.alerts.create({
      name: 'Daily Budget Alert',
      condition: 'daily_cost > 100',
      window: '1d',
      channels: ['email', 'slack'],
      severity: 'critical'
    })
    
    // Create anomaly detection alert
    await this.ants.alerts.create({
      name: 'Cost Anomaly Alert',
      condition: 'cost_anomaly > 2.0',
      window: '1h',
      channels: ['slack', 'pagerduty'],
      severity: 'warning'
    })
    
    console.log('✅ Cost alerts configured')
  }
  
  async monitorCostAlerts() {
    const alerts = await this.ants.alerts.getCostAlerts()
    
    console.log('📊 Cost Alert Status')
    console.log('='.repeat(50))
    
    alerts.forEach(alert => {
      const status = alert.active ? '🔴 ACTIVE' : '🟢 OK'
      console.log(`${alert.name}: ${status}`)
      if (alert.active) {
        console.log(`  Triggered: ${alert.triggeredAt}`)
        console.log(`  Current value: ${alert.currentValue}`)
        console.log(`  Threshold: ${alert.threshold}`)
      }
    })
    
    return alerts
  }
}

ROI Measurement

1. ROI Calculation

class ROIAnalyzer:
    def __init__(self):
        self.ants = ants
    
    def calculate_roi(self, period="last_30_days"):
        """Calculate ROI for AI investments"""
        
        roi_data = self.ants.finops.calculate_roi(period=period)
        
        print("📈 ROI Analysis")
        print("=" * 50)
        print(f"Period: {period}")
        print(f"Total AI Costs: ${roi_data['total_costs']:.2f}")
        print(f"Revenue Generated: ${roi_data['revenue_generated']:.2f}")
        print(f"Cost Savings: ${roi_data['cost_savings']:.2f}")
        print(f"ROI: {roi_data['roi_percentage']:.1f}%")
        print(f"Payback Period: {roi_data['payback_period']} days")
        
        # ROI by use case
        print("\nROI by Use Case:")
        for use_case, roi in roi_data['by_use_case'].items():
            print(f"  {use_case}: {roi['roi_percentage']:.1f}%")
        
        return roi_data
    
    def track_roi_trends(self, period="last_90_days"):
        """Track ROI trends over time"""
        
        trends = self.ants.finops.get_roi_trends(period=period)
        
        print("📊 ROI Trends")
        print("=" * 50)
        
        for trend in trends[-7:]:  # Last 7 days
            print(f"{trend['date']}: {trend['roi_percentage']:.1f}%")
        
        return trends

2. Business Impact Measurement

class BusinessImpactAnalyzer {
  private ants: AgenticAnts
  
  async measureBusinessImpact() {
    console.log('📊 Business Impact Analysis')
    console.log('='.repeat(50))
    
    const impact = await this.ants.finops.getBusinessImpact()
    
    console.log(`Customer Satisfaction: ${impact.customerSatisfaction}%`)
    console.log(`Response Time Improvement: ${impact.responseTimeImprovement}%`)
    console.log(`Error Rate Reduction: ${impact.errorRateReduction}%`)
    console.log(`Cost per Customer: $${impact.costPerCustomer.toFixed(2)}`)
    console.log(`Revenue per Customer: $${impact.revenuePerCustomer.toFixed(2)}`)
    
    // Calculate business value
    const businessValue = impact.revenuePerCustomer - impact.costPerCustomer
    console.log(`Net Business Value per Customer: $${businessValue.toFixed(2)}`)
    
    return impact
  }
  
  async trackBusinessMetrics() {
    const metrics = await this.ants.finops.getBusinessMetrics()
    
    console.log('📈 Business Metrics Trends')
    console.log('='.repeat(50))
    
    metrics.forEach(metric => {
      console.log(`\n${metric.name}:`)
      console.log(`  Current: ${metric.current}`)
      console.log(`  Trend: ${metric.trend}`)
      console.log(`  Change: ${metric.changePercentage}%`)
    })
    
    return metrics
  }
}

Continuous Optimization

1. Automated Optimization

class ContinuousOptimizer:
    def __init__(self):
        self.ants = ants
    
    def setup_automated_optimization(self):
        """Setup automated optimization processes"""
        
        print("🤖 Setting Up Automated Optimization")
        print("=" * 50)
        
        # Configure automatic model selection
        self.ants.finops.configure_auto_model_selection({
            "enabled": True,
            "optimization_goal": "cost_performance_ratio",
            "evaluation_period": "weekly"
        })
        
        # Configure automatic prompt optimization
        self.ants.finops.configure_auto_prompt_optimization({
            "enabled": True,
            "optimization_threshold": 0.1,  # 10% improvement
            "evaluation_period": "daily"
        })
        
        # Configure automatic caching
        self.ants.finops.configure_auto_caching({
            "enabled": True,
            "cache_threshold": 0.8,  # 80% similarity
            "evaluation_period": "hourly"
        })
        
        print("✅ Automated optimization configured")
    
    def run_optimization_cycle(self):
        """Run optimization cycle"""
        
        print("🔄 Running Optimization Cycle")
        print("=" * 50)
        
        # Get optimization recommendations
        recommendations = self.ants.finops.get_optimization_recommendations()
        
        print(f"Found {len(recommendations)} optimization opportunities")
        
        for rec in recommendations:
            print(f"\nOptimization: {rec['title']}")
            print(f"  Potential savings: {rec['savings_percentage']:.1f}%")
            print(f"  Monthly savings: ${rec['monthly_savings']:.2f}")
            print(f"  Risk level: {rec['risk_level']}")
            
            if rec['risk_level'] == 'low':
                print(f"  ✅ Applying optimization...")
                self.ants.finops.apply_optimization(rec['id'])
            else:
                print(f"  ⚠️  Manual review required")
        
        return recommendations

2. Optimization Monitoring

class OptimizationMonitor {
  private ants: AgenticAnts
  
  async monitorOptimizations() {
    console.log('📊 Optimization Monitoring')
    console.log('='.repeat(50))
    
    const optimizations = await this.ants.finops.getActiveOptimizations()
    
    optimizations.forEach(optimization => {
      console.log(`\nOptimization: ${optimization.name}`)
      console.log(`  Status: ${optimization.status}`)
      console.log(`  Applied: ${optimization.appliedAt}`)
      console.log(`  Savings: ${optimization.savingsPercentage}%`)
      console.log(`  Monthly savings: $${optimization.monthlySavings.toFixed(2)}`)
      
      if (optimization.performanceImpact) {
        console.log(`  Performance impact: ${optimization.performanceImpact}%`)
      }
    })
    
    return optimizations
  }
  
  async trackOptimizationImpact() {
    const impact = await this.ants.finops.getOptimizationImpact()
    
    console.log('📈 Optimization Impact')
    console.log('='.repeat(50))
    console.log(`Total savings: $${impact.totalSavings.toFixed(2)}`)
    console.log(`Performance impact: ${impact.performanceImpact}%`)
    console.log(`Quality impact: ${impact.qualityImpact}%`)
    
    return impact
  }
}

Best Practices

1. Cost Optimization Checklist

class CostOptimizationChecklist:
    def __init__(self):
        self.ants = ants
    
    def run_optimization_checklist(self):
        """Run comprehensive optimization checklist"""
        
        print("✅ Cost Optimization Checklist")
        print("=" * 50)
        
        checklist = [
            ("Model Selection", self.check_model_selection),
            ("Prompt Optimization", self.check_prompt_optimization),
            ("Caching Implementation", self.check_caching),
            ("Budget Management", self.check_budget_management),
            ("ROI Tracking", self.check_roi_tracking),
            ("Automated Optimization", self.check_automated_optimization)
        ]
        
        results = {}
        
        for item, check_function in checklist:
            try:
                result = check_function()
                results[item] = result
                status = "✅ PASS" if result['passed'] else "❌ FAIL"
                print(f"{item}: {status}")
                if not result['passed']:
                    print(f"  Issues: {result['issues']}")
            except Exception as e:
                results[item] = {"passed": False, "issues": [str(e)]}
                print(f"{item}: ❌ ERROR - {e}")
        
        return results
    
    def check_model_selection(self):
        """Check model selection optimization"""
        # Implement model selection checks
        return {"passed": True, "issues": []}
    
    def check_prompt_optimization(self):
        """Check prompt optimization"""
        # Implement prompt optimization checks
        return {"passed": True, "issues": []}
    
    def check_caching(self):
        """Check caching implementation"""
        # Implement caching checks
        return {"passed": True, "issues": []}
    
    def check_budget_management(self):
        """Check budget management"""
        # Implement budget management checks
        return {"passed": True, "issues": []}
    
    def check_roi_tracking(self):
        """Check ROI tracking"""
        # Implement ROI tracking checks
        return {"passed": True, "issues": []}
    
    def check_automated_optimization(self):
        """Check automated optimization"""
        # Implement automated optimization checks
        return {"passed": True, "issues": []}

2. Cost Optimization Strategy

class CostOptimizationStrategy {
  private ants: AgenticAnts
  
  async implementOptimizationStrategy() {
    console.log('🎯 Implementing Cost Optimization Strategy')
    console.log('='.repeat(50))
    
    // Phase 1: Quick Wins
    console.log('\nPhase 1: Quick Wins')
    await this.implementQuickWins()
    
    // Phase 2: Model Optimization
    console.log('\nPhase 2: Model Optimization')
    await this.optimizeModels()
    
    // Phase 3: Advanced Optimization
    console.log('\nPhase 3: Advanced Optimization')
    await this.implementAdvancedOptimizations()
    
    // Phase 4: Continuous Optimization
    console.log('\nPhase 4: Continuous Optimization')
    await this.setupContinuousOptimization()
  }
  
  private async implementQuickWins() {
    // Implement quick wins like caching, prompt optimization
    console.log('✅ Implemented quick wins')
  }
  
  private async optimizeModels() {
    // Optimize model selection and usage
    console.log('✅ Optimized models')
  }
  
  private async implementAdvancedOptimizations() {
    // Implement advanced optimizations
    console.log('✅ Implemented advanced optimizations')
  }
  
  private async setupContinuousOptimization() {
    // Setup continuous optimization processes
    console.log('✅ Setup continuous optimization')
  }
}

Troubleshooting

Common Cost Issues

Issue: Unexpected cost spikes

def debug_cost_spikes():
    # Analyze cost spikes
    spikes = ants.finops.get_cost_spikes(period="last_7_days")
    
    print("Cost Spike Analysis:")
    for spike in spikes:
        print(f"Date: {spike['date']}")
        print(f"Cost: ${spike['cost']:.2f}")
        print(f"Percentage increase: {spike['percentage_increase']:.1f}%")
        print(f"Likely cause: {spike['likely_cause']}")
        print("---")

Issue: High cost per query

async function debugHighCostPerQuery() {
  const highCostQueries = await ants.finops.getHighCostQueries({
    threshold: 0.01, // $0.01 per query
    period: 'last_24h'
  })
  
  console.log('High Cost Queries:')
  highCostQueries.forEach(query => {
    console.log(`Cost: $${query.cost.toFixed(4)}`)
    console.log(`Query: ${query.query}`)
    console.log(`Model: ${query.model}`)
  })
}

Next Steps

Example Projects


Congratulations! 🎉 You now have comprehensive cost optimization strategies that will help you reduce AI costs while maintaining quality and performance.