Docs
AI Governance
AI Cost
Cost Optimization

Cost Optimization

Reduce AI costs without sacrificing quality through intelligent optimization strategies.

Optimization Strategies

1. Model Selection

Use the right model for each task:

  • GPT-4 for complex reasoning
  • GPT-3.5 for simple tasks
  • Smaller models for classification

2. Response Caching

Eliminate redundant LLM calls:

ants.cache.enable()
// First call: $0.03
// Second identical call: $0.00 (cached)

3. Prompt Optimization

Shorter prompts = lower costs:

  • Remove unnecessary context
  • Use concise instructions
  • Optimize system messages

4. Smart Sampling

Don't trace everything:

# Sample strategically
if should_trace(request):
    trace = ants.trace.create(...)

Next Steps